Tevatron Collider Overview # Giorgio Chiarelli Istituto Nazionale di Fisica Nucleare Sezione di Pisa With the help of many DO and CDF colleagues # More than just a Collider.. # Tevatron-Introduction The Tevatron collider is an ensemble of accelerators. "Run II is not a construction" project. Run II is a complex campaign of operations, maintenance, upgrades, R& D and studies." (D.Lehman) ⇒4.4-8.5 fb⁻¹ by FY 2009 →More later Record: 2.9x10³²cm⁻²s⁻¹ → Record: 2.9x10³²cm⁻²s⁻ ⇒Keep improving ⇒In one week 44.8 pb >record # Data taking...2.9×10³²... #### Accelerator delivers.. #### Detectors use: ### Two detectors # CDF underwent serious upgrades: - Thew tracking system - ⇒COT, new silicon tracker (6-7 layers DS+1 SS) - → New forward calorimetry - Tracking at trigger level - ⇒Tracks at L1 - ⇒Displaced from PV@L2 #### DO: change of philosophy - → New tracking system - ⇒Based on a 2T solenoid - ⇒New 8 layers fiber tracker - ⇒Secondary vertices capability (SVX) - ⇒Recently added (IIb) an extra layer of silicon sensors - Timproved muon coverage - □ Upgraded trigger (IIa, IIb) # Experiments: CDF # Experiments: DO ### Tevatron Collisions I #### Two main areas - → B Physics - THigh" Pt Physics - ⇒SM (QCD) - ⇒SM(EWK) - \Rightarrow SM(Top) - ⇒Higgs, BSM - Trigger and analyses being retuned to match the challenge - As luminosity increases experiments are forced to deal with new challenges At stake the capability to go down the ladder and explore the fb region Giorgio Chiarelli, DIS 07 ### Tevatron Collisions II #### The hard scattering is not all there is! - ~ Parton Distribution Functions (PDF): fraction of (anti)proton carried by incoming partons. - □ Underlying Event (UE): extra stuff produce by - □ Initial and Final State Radiation (ISR, FSR): extra gluons radiating off the original/final partons. - quark/gluons and recombination into hadrons reconstructed inside a cone. All of these processes, and more, have an impact on what we measure ## Some CDF results for Win 07 #### QCD - b-bbar dijet production cross section (260 pb-1) - rightharpoonup Z o b-bbar - Dijet production cross section measurement (1.13 fb⁻¹) #### **B** Physics Lifetime measurements: \Rightarrow B+, BO, Bs and $\Lambda_{\rm B}$ (1fb⁻¹) ~ Rare decay searches: $\Rightarrow B^{+} \rightarrow \mu^{+}\mu^{-} K^{+}, B^{0} \rightarrow \mu^{+}\mu^{-} K^{*}$ $\Rightarrow B \rightarrow hh$ #### **EWK** - Observation of WZ production - Evidence for ZZ production - → W mass, width #### Top - Top mass in all-jets channel - Production cross section (lepton+isolated track) - Search for W' using the single top sample - Top Production Mechanism (gg vs qq) - Top Charge #### New Phenomena - Search for New Particles Coupling to Z+jets (b'->Z+b) in 1.1 fb⁻¹ - SUSY trilepton combined limit 0.7 to 1 fb⁻¹ - High-mass dielectron (Z' search) 1.3 fb⁻¹ #### Higgs (fb⁻¹) - → H→ττ SUSY Higgs - → H→WW ME-based analysis - ~ ZH→IIbb 2D-NN and MÉT fitter analysis ### Some results from DO #### After ICHEP - → B physics: - ⇒ LB lifetime in 1.3 fb⁻¹ - ⇒ Search for Bs oscillations in 1.2 fb⁻¹ - C QCD - → EWK - ⇒ Wg in 900 pb⁻¹ - → Top - $\Rightarrow \sigma(ttbar)$ - Searches - ⇒ GMSB SUSY - ⇒ Fermiophobic Higgs - \Rightarrow ZH #### Winter 07 - → B Physics - \Rightarrow B_s $\rightarrow \mu\mu$ 2 fb⁻¹ - C QCD - ⇒ Triple jet differential cross section 1.1 fb⁻¹ - □ EWK - \Rightarrow Z γ * \rightarrow 4| 1 fb⁻¹ - → Top - $\Rightarrow \sigma(ttbar)$ - → Dilepton - → L+jets - ⇒ Top mass - ⇒ Single top - Searches - ⇒ 2nd generation LQ - ⇒ WH (many channels) - ⇒ Updated SM Higgs limit - $\Rightarrow H \rightarrow \tau\tau$ # B Physics at an Hadron Collider ## Thought to be almost impossible - Exploits large cross section - ⇒Need tight selection at trigger level - ⇒Tracking capability at L1 and displaced track trigger at L2 at CDF - Challenge at high luminosity - Some very recent results: - ⇒Bs oscillations [Observed by CDF with 1fb-1] - ⇒B→hh [1fb⁻¹] - $\rightarrow A_{CP}$ in B⁰ $\rightarrow K\pi$, B⁰_s $\rightarrow K\pi$ - \rightarrow BF: B \rightarrow KK,B \rightarrow π K, B \rightarrow \Lambdap - ⇒Search for rare B decays [D0 with 2 fb⁻¹] ⇒Bs \rightarrow µµ, B_d \rightarrow µµ - ⇒ Measurement of B_c mass, new B Baryons states, excited states ### Bs oscillations #### D0 has a limit (900 pb⁻¹) \bigcirc 14.9 \triangle m_s<21 ps⁻¹ (90% CL) #### CDF, with 1fb⁻¹ presents Observation of B_s Oscillations #### PRL 97, 242003 2006 - $^{\circ}\Delta m_s$ =17.77±0.10(stat)±0.07 (syst) ps⁻¹ : > 5 σ observation - Same data set used for previous (spring 06) limit - ⇒Improved selection - ⇒Improved analysis technique - ⇒ A lot of efforts # Rare decays as window to new physics Some decays are predicted with BF 10⁻⁹ in the SM but have a potentially much larger rates in SUSY models $$BR(SUSY) \propto BR(SM) \cdot \frac{m_b^4 \cdot (\tan \beta)^6}{m_{H^0}^4}$$ #### DO new result with 2 fb-1 \circ 3 events (2.3+-0.7 exp.) Not yet combined with CDF 0.8 fb-1 CL limits: \Rightarrow B_s<10(8) 10⁻⁸ 95(90) % \Rightarrow B_d<2.3(2) 10⁻⁸ 95(90) % → To be updated soon.. Run IIa data taking (1.3 pb⁻¹) 1 evts, 10.8±0.2 exp # SUSY limits-examples $M_A(GeV)$ M. Carena (**Moriond 2007**) $\tan \beta = 50$, $A_0 = 0$, $\mu > 0$, $m_1 = 175$ GeV 1250 1500 # Lifetimes, masses...new states #### DO - $\mbox{\ensurement}$ single measurement of $\tau_{\mbox{\scriptsize Bs}}$ using s.l. decays - \Rightarrow Combination of some measurements of its own with the Δm_s from CDF and measurements from B factories #### Study of B states: - B_c mass and properties - $^{\frown}$ New measurement of $\Lambda_{\rm B}$ lifetime (1 fb⁻¹) ``` ⇒ DO: →1.28±.11±.09 ps (sl) →1.3 ±.14±.05 ps (exc) ⇒ CDF → 1.5±0.77±0.012 ps ``` \bigcirc CDF: Observation of $\Sigma_{\mathbf{B}}$ and $\Sigma_{\mathbf{B}^*}$ # High P_T Physics Need to define a clear set of physics objects - Jets - Tigh pt charged lepton - ~ neutrinos - → B tagged jets - ⇒Displaced tracks - ⇒Soft lepton id High mass objects (top, Higgs, New particles) decays into jets, leptons (charged and neutral) ~ Challenge: reconstruct initial parton state # QCD Physics #### Basics for any possible analysis: - → Jets carry information about QCD, PDF, couplings - ⇒Et and angular distributions, fragmentation - ⇒Comparison to pQCD predictions - Measuring jets means understand calorimetry and tracking - ~ Can be tools (or background) in many physics topics #### Results: - ☐ Inclusive jet cross section (inherited discrepancy with pQCD from Run I) - → Jet fragmentation - Dijet mass x-section - Underlying events - → Diffraction #### See talks by O. Atramentov, J. Cammin, M. D'Onofrio, L. Pinera, C. Mesropian, S. Vallecorsa # Inclusive jet Physics #### Jets are a key probe - Fundamental in measuring top mass, search for new physics, test of the SM.. - ~ Can show early appearance of new physics! Large effort by both experiments in understanding production and properties #### Less inclusive states With larger statistics and improved detectors more and more results from prompt photons: - \sim D0 measures the triple γ —jet differential cross sections in 1 fb⁻¹ - CDF exploits smaller data sample collected with trigger devoted to detect secondary vertices and studies bbar ### EWK Tests of the SM #### Basics for top, searches - Decay, associated production - To Often background for rare processes - Tiscrepancy from SM would signal new physics #### Both CDF and DO measure - Tinclusive and differential production cross section (PDFs..) - ~ Multiboson production (WW, ZZ, WZ, Wγ, Zγ: really at the boundaries of the Tevatron reach ``` ⇒W7: ``` \rightarrow First observation by D0 (3.3 σ) \rightarrow CDF WZ at 6 σ ⇒WW production observed with 0.35 fb⁻¹ →CDF, DO \Rightarrow CDF evidence for ZZ at 3 σ (winter 07) \Rightarrow Z γ , W γ test of trilinear gauge coupling \Rightarrow Z γ measured by CDF (0.35 fb⁻¹) and DO (1 fb⁻¹) → Wy: D0 measures an angular distribution looking for the radiation amplitude zero. ¬ CDF measures W mass and width See talks by S.Malik, Y.Maravin, A.Robson # ZZ, WZ Intermediate steps towards WH, WZ→IIIv has a NLO σ =3.7±0.1 pb D0 presented a 3.3 σ evidence in Summer 06 σ =3.98^{+1.91}_{-1.53} (stat+sys)pb Winter 07: CDF improved its analysis by extending acceptance for e and μ | Source | Expectation \pm Stat \pm Syst \pm Lumi | | |------------------|----------------------------------------------|--| | Z+jets | $1.22 \pm 0.27 \pm 0.28 \pm$ - | | | ZZ | $0.89 \pm 0.01 \pm 0.09 \pm 0.05$ | | | $Z\gamma$ | $0.48 \pm 0.06 \pm 0.15 \pm 0.03$ | | | $t\bar{t}$ | $0.12 \pm 0.01 \pm 0.01 \pm 0.01$ | | | WZ | $9.79 \pm 0.03 \pm 0.31 \pm 0.59$ | | | Total Background | $2.70 \pm 0.28 \pm 0.33 \pm 0.09$ | | | Total Expected | $12.50 \pm 0.28 \pm 0.46 \pm 0.68$ | | | Observed | 16 | | $\sigma(WZ)=5.0^{+1.8}_{-1.6}(stat.+syst.)$ pb Prob(background only) < 1.5×10^{-7} (5.1 σ) ### ZZ \bigcirc CDF adds new channel (ZZ→IIvv) to summer 06 analysis and, in 1.4 pb⁻¹, finds $$\Rightarrow$$ σ =1.14^{+1.1}_{-0.8} (stat+syst) pb # Ζγ, Wγ The gauge structure of the SM has a crucial test in the (destructive) interference in $W\gamma$ - The Both CDF and DO measured Zγ and Wγ cross section in 1 fb⁻¹ - CDF: $$\Rightarrow \sigma(W+\gamma) = 19.1\pm2.8 \text{ pb}$$ $$\Rightarrow \sigma(Z+\gamma) = 4.9\pm0.5 \text{ pb}$$ rightharpoonup D0(E_T γ >7GeV, M_T(I γ ,MET)>90: rightharpoonup rightharpoonup D0(E_T γ >7GeV, M_T(I γ ,MET)>90: rightharpoonup rightharpoonup rightharpoonup D0(E_T γ >7GeV, M_T(I γ ,MET)>90: σ σ (Z+ γ) =4.51±0.4±0.3(lum) pb The interference among the three tree-level diagrams below create a zero in the $\cos \vartheta^*$ distribution at $\cos \vartheta^* = \pm 1/3$ ### W mass and width CDF also measure the W width $\Gamma_{\rm W}$ = 2032±71 MeV/c² CDF presents the best single-experiment result, which is now statistically limited $MW = 80413 \pm 48 \text{ MeV/c}^2$ # Top Physics Top has a strong relation with EWSB ⇒Yukawa coupling ~1 Test SM and QCD prediction ⇒Study of decay and production (Wtb vertex) - Some studies performed in Run I - → With 1 fb⁻¹ in Run II, performed precision measurements of: - ⇒ttbar production cross section - → Pre-requirement to select top-enriched samples - ⇒Top mass - >keeps improving - The Many ongoing analyses - ⇒Fundamental: go from evidence (DO 2007) to discovery of EW top production (single top) - → Direct measurement of Vtb - → Critical test of the SM - ⇒Helicity meaurement, top charge etc. Talks by C.Gerber, S.Jabeen, J. Wagner # Top Production # Out of the different channels, select dilepton to improve statistics use "identified lepton" + "isolated track" #### **Events Predicted vs. Number of Jets** # Use tagging to enrich sample $\epsilon \approx 55\%$ (bckg 0.5%) # Top cross section #### Exp.& Th. Errors comparable: σ (all had): 8.3±1+2_{-1.5}±0.5 pb σ_{tt} =6.8±0.6 pb (Kidonakis, Vogt) σ_{tt} =6.7+0.7-0.9 pb (Cacciari et al.) Decay channel in dilepton more and more important, 1 fb⁻¹ D0: σ_{tt} = 6.8^{+1.2}_{-1.1}(stat)^{+0.9}_{-0.8}(syst)±0.4(lumi)pb CDF σ_{tt} = 9.0±1.3(stat)± 0.5(sys)±0.5(lum)pb \sim D0 shows two results in l+jets with 1 fb⁻¹: $$\sigma_{\rm tt}$$ = 8.3 $^{+0.6}_{-0.5}$ (stat) $^{+0.9}_{-1.0}$ (syst) ± 0.5 (lumi) pb Experimental accuracy reaching (in 2 fb⁻¹?) theoretical predictions # Top Mass, present and future # In each decay channel we also measure M_{top} CDF Runll preliminary L=943pb CDF Runll preliminary L=943pb⁻¹ # Great effort in understanding JES New WA (March 07): Mtop= $170.9 \pm 1.8 GeV/c^2$ # Top future (at the Tevatron) #### CDF and DO can do well... - → Improved B tagger - JES improves with the dataset Together we can do even better... Possibility of better than1% accuracy ⇒Tevatron legacy? ### Already better than the TDR [3 GeV/c2] (2fb-1) Discussion on the meaning of a 1% accuracy (ongoing work with theoreticians) # Single top (国) While top was detected in pairs, SM predicts that can be produced alone by EWK processes Tiny production cross section in both channels: \Rightarrow s-channel(a)=0.88 pb ← 1 fb⁻¹ CDF set limit: $\Rightarrow \sigma(s+t) < 2.6 \text{ pb } @95\%CL$ #### $\sigma \propto |V + b|^2$ Direct Vtb measurement \Rightarrow t-channel(b)=1.98 pb A.Robson, \sim D0 find a 3.4 σ signal in 0.9 fb^{-1} : # Single top # DO presented first evidence for single top this year ~Very challenging analysis ⇒Several statistical methods used →One chosen (most powerful) ⇒ $$\sigma(s+t)=4.9\pm1.4$$ pb ⇒0.68<|Vtb|<1 @95%*C*L # Indirect bounds for the Higgs Tevatron is improving the understanding of the Higgs every day: TEWKG March 2007 Can bring us beyond the SM? # A direct path towards the Higgs ### Light or heavy Higgs? # Strong b-tagging, large lepton coverage ~ X-section shows that we must use channels with large BF (no γγ) ``` m_H Limit/SM (GeV) Exp. Obs. 115 7.6 10.4 160 5.0 3.9 180 7.5 5.8 ``` # Ongoing effort # Last update in mid March (new CDF result on WW, ZH and from DO on WH, ZH→new) | Americain | CDE limit (18k-l) | DO limit (18b-1) | |------------------------------|--------------------------------|---------------------| | Analysis | CDF limit (1fb ⁻¹) | D0 limit (1fb-1) | | | factor above SM | factor above SM | | | observed (expected) | observed (expected) | | ZH → vv bb @ 115 | | \ / | | Technique: M _{jj} | 16 (15) | 40 (34)* | | WH → I _V bb @ 115 | | | | Technique: M _{ii} | 26 (17) | ★ 10 (9) | | Technique: ME | | ★ 13 (10) | | ZH → IIbb @ 115 | | | | Technique: NN2D | * 16 (16) | 33 (34) | | H → WW → IvIv @ 160 | | | | Technique: ΔΦ (I,I) | 9 (6) | 4 (5) | | Technique: ME | ★ 3.5 (5) | | | | / | | Néw, April 6 2007 (post Winter Conferences) ### Non SM Higgs Non SM Higgs(es) have sizeable decay rate to $\tau\tau$ pairs Large efforts to bring up efficiency to trigger on tau events (and to detect tau) ### Chargino and Neutralino searches #### Both experiments look for SUSY signals - Chargino and neutralino are produced with sizeable cross sections - More difficult search for squarks and gluinos ### More "exotic" searches ### Drell Yan at large masses can be the key \bigcirc Z' \rightarrow ee at CDF ### New limits on LQ ~2nd and 3rd generation LQ (pair produced at the Tevatron) #### Conclusion-I Tevatron experiments are digging a gold mine of 2fb⁻¹ - The accelerator complex is working well - ⇒ We now collect more data in one week than we used to gather evidence for top - Tin the fb region many interesting processes at the boundary of the Standard Model - ⇒CDF and DO are well equipped to study physics in this region - The interest of our program stays in the combination of an accelerator performing well with two well-understood detectors - → We considerably shortned the time from data taking to publication of results - ⇒19 contributions in parallel sessions will discuss the subtleties of many analyses ### Conclusion II ### Detectors are performing well ○ Continuous effort More and more challenging analysis are being performed → We are exploring a new region... ⇒The prize? Many thanks to my CDF and DO colleagues and to the Organizers # CDF Experiment # Detector Status - big picture #### Silicon longevity Texpect silicon detector to last through 2009 #### Tracking chamber (COT) → Aging not a problem, will be ok through 2009 #### High Luminosity running - ~ Trigger - ⇒Requires constant attention - ⇒Upgrades on tracking and calorimetry fronts - → DAQ - ⇒Built more bandwidth - Physics - ⇒No significant effect up to 3e32 No showstopper foreseen through FY09 #### SVX survival # SVX LO is expected to invert at 2.5 fb⁻¹ We are following (so far) this prediction in its optimistic fashion Technicality: Vdep studied using both bias vs noise scan and bias vs collected charge scan → Both results agree Predizioni 2002 | Layer | safe fb ⁻¹ | cause | |--------|-----------------------|-----------| | 0 (55) | 7.4 | Vdep | | 1 (DS) | 4.3(5.6) | S/N(Vdep) | | 2 (DS) | 8.5(10.9) | S/N(Vdep) | | 3 (DS) | 10.7 | Vdep | | 4 (DS) | 23(30) | S/N(Vdep) | | 5(DS) | 14 | Vdep | | 6(DS) | >40 | n/a | | 7(DS) | > 40 | n/a | ### **COT Stability** ### Since we inserted oxygen ←COT stable # Silicon Longevity - details Bias voltage required to fully deplete Silicon sensors change with irradiation: decrease - type inversion - increase If depletion voltage larger than maximum safe bias voltage \circ cannot fully deplete sensors \rightarrow efficiency loss Bias scans show innermost SVX layer (most vulnerable) is hearing inversion Closer to -1-sigma prediction SVX Layer 0 Model: S. Worm, Lifetime of the CDF Run II Silicon, VERTEX 2003 Silicon stable and expected to outlast 8 fb-1 # Tracking Chamber - details We addressed an aging problem of the Central Outer Tracker drift chamber in 2004 - Aging was found to be due to hydrocarbon growth on wires - \sim Addition of O_2 to gas in June 2004 restored gain to original 2002 levels - Possible new evidence of aging at the highest luminosities - ⇒ Minimal, if at all - ⇒ New gas purification system to clean re-circulated gas expected to be complete later this year - ⇒ Can also increase amount of oxygen added ## XFT Upgrade XFT originally only utilized axial layers Upgrade adds 3 stereo layers to 4 layer axial XFT system - better fake rejection - better resolution # Trigger @ High Luminosity #### Experience with luminosity at ~3e32 Giorgio Chiarel - → Bulk of triggers [for Higgs] are fully functional to at least 3e32 - $\begin{cases} \begin{cases} \begin{cases}$ - ⇒XFT and Cal upgrades to help deal with these - Using "dynamic prescaling" to optimize physics and bandwidth - ⇒ High rate triggers have large prescale at high lum - ⇒ Prescales relaxed as banwidth becomes available at low lum - ~ Most of the me is spent at helow ~1 5032 No serious issue but continuous watch is needed # Experiments: DZero (D0) #### Features: - Precision silicon vertexing - Outer Fiber Tracker (r=0.5m) - 2.0 T solenoid - EM+HAD Calorimetry - muon chambers $(|\eta| < 2.0)$ ### DO IIb upgrades - Tracking: Layer-0 Silicon Detector - 19 bad channels (out of total of 12,288 channels) - Signal to noise is ~15 to 1 - · No significant coherent noise - Improvement in decay length resolution - Tracking: AFE-IIt readout boards for fiber tracker - Eliminates amplifier saturation at high luminosity - Substantially improves pulse height resolution - > optimization of VLPC bias voltages and reduced thresholds ❖ LED spectra pedestals ### DO IIb upgrades - Level-1 Trigger: Calorimeter - Complete replacement of 10 racks of run I electronics - Allows electron, tau and jet clustering at Level-1 - Sharper turn-on curves! e.g. 45 GeV jet trigger ### DO IIb upgrades ### Triggering at L1 - Level-1 Trigger: Tracking - More sophisticated algorithm requiring larger FPGAs > sharper turn-on lower fake rates - · Level-1 Trigger: Calorimeter-Track Matching - Entirely new capability for DØ at Level-1 - · formerly available only at Level-2 - > Improved rejection and linearity with luminosity Openings of new physics capabilities! #### The machine The basic is a good, working accelerator →At the moment excellent performance of →8 different machines (e-cooling included) We are working with a goal of integrated luminosity ¬~8 fb-¹/esperimento by FY09 ⇒ Dubbed Design and a "fallback position" ~4.5 fb⁻¹/experiment by FY 09 ⇒a.k.a. "baseline" I would like to thank the BD people for an outstanding job, and for their day by day efforts # Luminosity Formula $$L = \frac{fN_p N_a}{2\pi(\varepsilon_p + \varepsilon_a)\beta^*} H(\frac{\sigma_z}{\beta^*})$$ N = bunch intensity, f = collision frequency ε = transverse emittance (size), σ_z = bunch length H = "hour glass" factor (<1, accounts for beam size over finite bunch length) Increasing the Luminosity Smaller β^* (new 28 cm β^* lattice in Sep 05) Larger N_a and smaller ϵ_a from Recycler + electron cooling # Projection for 30 mA/hr stack rate | Luminosity Parameters | | | | | | | | |-------------------------------|--------|------|-------|-------|-------|-------|------------------------------------------------------| | Phase | 1 | 2 | 3 | 4 | 5 | 6 | | | Initial Luminosity | 77.0 | 97.1 | 137.2 | 318.9 | 331.2 | 331.2 | x10 ³⁰ cm ⁻² sec ⁻¹ | | Average Luminosity | 33.8 | 45.3 | 64.0 | 128.0 | 132.9 | 132.9 | x10 ³⁰ cm ⁻² sec ⁻¹ | | Integrated Luminosity / week | 12.1 | 16.5 | 23.3 | 48.2 | 50.1 | 50.1 | pb ⁻¹ | | Integrated Luminosity / store | 3.0 | 3.6 | 5.1 | 10.1 | 10.5 | 10.5 | pb ⁻¹ | | Number of stores / week | 4.0 | 4.6 | 4.6 | 4.8 | 4.8 | 4.8 | | | Average Store Hours / week | 100 | 101 | 101 | 105 | 105 | 105 | Hours | | Store Length | 25 | 22 | 22 | 22 | 22 | 22 | Hours | | Initial Lifetime | 6.4 | 6.4 | 6.4 | 5.0 | 5.0 | 5.0 | Hours | | Average Lifetime | 12.8 | 12.3 | 12.3 | 9.9 | 9.9 | 9.9 | Hours | | HEP Up Time / week | 110 | 113 | 113 | 117 | 117 | 117 | Hours | | sh Now, entering p | hase 4 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | Hours | # Projection for 30 mA/hr stack rate | | Antip | roton] | Param | eters | /6 | 60% i | ncrease | |---------------------------------|-------|---------|-------|---------|-------|-------|-------------------------| | Phase | 1 | 2 | 3 | 4 | 5 | 6 | | | Zero Stack Stacking Rate | 13.0 | 16.0 | 18.9 | 30.2 | 30.2 | 30.2 | x10 ¹⁰ /hour | | Average Stacking Rate | 6.3 | 7.4 | 9.6 | 21.7 | 21.7 | 21.7 | x10 ¹⁰ /hour | | Stack Size transferred | 158.2 | 163.8 | 211.5 | 476.5 | 476.5 | 476.5 | $x10^{10}$ | | Stack to Low Beta | 117.1 | 124.5 | 169.2 | 381.2 | 381.2 | 381.2 | $x10^{10}$ | | Pbar Production | 16.0 | 15.0 | 16.0 | 21.0 | 21.0 | 21.0 | x10 ⁻⁶ | | Protons on Target | 5.4 | 6.5 | 7.2 | 8 | 8 | 8 | $x10^{12}$ | | Pbar cycle time | 2.4 | 2.2 | 2.2 | 2 | 2 | 2 | Secs. | | Pbar up time fraction | 0.75 | 0.75 | 0.75 | 0.9 | 0.9 | 0.9 | | | Initial Stack Size | 15 | 15 | 0 | 0 | 0 | 0 | $x10^{10}$ | | Stack Size at 1/2 Stacking Rate | 150 | 150 | 150 | 150 | 150 | 150 | x10 ¹⁰ | | | FY04 | | Ecool | | | | | | | SI | ip Sta | ck S | itack t | ail | | | ### Saving Private Higgs #### Maintain existing triggers Fake triggers at High Lumi View of a Z → ee at low lum. looking down the beampipe 8 add. Interactions/crossing ~ 300 cm⁻²s⁻¹ Trigger σ for muons increases to third power! #### Defense: Upgrading track trigger from 2-D to 3-D Makes use of stereo tracking layers Cuts down fake muons by factor of 5! · Installation and commission this winter # W/mass measurement strategy W mass obtained from fit of transverse mass $M_T(lv)$ use Z events to model detector response to hadronic recoil energy and calibrate the charged lepton resolution obtain charged lepton scale using - $rightharpoonup J/\psi$ + Upsilon mass for momentum scale - use Z events to cross check #### W production model: - rightharpoonup Use Z decay to model boson p_T distr. - ~ QED corrections to W/Z decay - QCD corrections to W/Z production - Will use next PDFs fits with CDF W asymmetry measurement ### W mass uncertainties ### Three fits (MT, PTe, MET) CDF II preliminary L = 200 pb⁻¹ | MET Uncertainty [MeV] | Electrons | Muons | Common | |----------------------------|-----------|-------|--------| | Lepton Scale | 30 | 17 | 17 | | Lepton Resolution | 9 | 5 | 0 | | Recoil Scale | 15 | 15 | 15 | | Recoil Resolution | 30 | 30 | 30 | | u _{II} Efficiency | 16 | 13 | 0 | | Lepton Removal | 16 | 10 | 10 | | Backgrounds | 7 | 11 | 0 | | p _T (W) | 5 | 5 | 5 | | PDF | 13 | 13 | 13 | | QÉD | 9 | 10 | 9 | | Total Systematic | 54 | 46 | 42 | | Statistical | 57 | 66 | 0 | | Total | 79 | 80 | 42 | | CDE | ш | preliminary | |-----|---|-------------| | | • | premimary | $L = 200 \text{ pb}^{-1}$ | p _⊤ Uncertainty [MeV] | Electrons | Muons | Common | |----------------------------------|------------|-------|--------| | Lepton Scale | 30 | 17 | 17 | | Lepton Resolution | 9 | 3 | 0 | | Recoil Scale | 1 7 | 17 | 17 | | Recoil Resolution | 3 | 3 | 3 | | u _{II} Efficiency | 5 | 6 | O | | Lepton Removal | 0 | O | 0 | | Backgrounds | 9 | 19 | 0 | | p _T (W) | 9 | 9 | 9 | | PDF | 20 | 20 | 20 | | QED | 13 | 13 | 13 | | Total Systematic | 45 | 40 | 35 | | Statistical | 58 | 66 | 0 | | Total | 73 | 77 | 35 | **CDF II preliminary** L = 200 pb⁻¹ | m _T Uncertainty [MeV | Electrons | Muons | Common | |---------------------------------|------------|-------|--------| | Lepton Scale | 30 | 17 | 17 | | Lepton Resolution | 9 | 3 | 0 | | Recoll Scale | 9 | 9 | 9 | | Recoil Resolution | 7 | 7 | 7 | | u _{II} Efficiency | 3 | 1 | 0 | | Lepton Removal | 8 | 5 | 5 | | Backgrounds | 8 | 9 | 0 | | p _T (W) | 3 | 3 | 3 | | PDF | 1 1 | 11 | 11 | | QED | 1 1 | 12 | 11 | | Total Systematic | 39 | 27 | 26 | | Statistical | 48 | 54 | | | Total | 62 | 60 | 26 | Giorgio Chiarelli, DIS 07 ### Bs oscillations CDF presented "Evidence" few months ago - $\Delta m_s = 17.31^{+0.33}_{-0.18} (stat)$ ±0.07(syst) - → Do you remember Top? Now with a full dataset of < 10. 1fb⁻¹ we present \bigcirc Observation of B_s Oscillation Submitted to PRL on Sept. 18 - $\Delta m_s = 17.77$ ±0.10(stat)±0.07(syst) > 5 σ Observation - Thigliore selezione - ~ Aggiunti alcuni canali - Migliorato il tagging, utilizOS Kaon tagging ### **Improvements** #### Official table spring 06 #### Luminosity Equivalent $(s/\sqrt{b})^2$ | Improvement | WH→lvbb | ZH→ννbb | ZH→llbb | |-----------------------|---------|---------|---------| | Mass resolution | 1.7 | 1.7 | 1.7 | | Continuous b-tag (NN) | 15 | 1.5 | 1.5 | | Forward b-tag | 1.1 | 1.1 | 1.1 | | Forward leptons | 1.3 | 1.0 | 1.6 | | Track-only leptons | 1.4 | 1.0 | 1.6 | | NN Selection | 1.75 | 1.75 | 1.0 | | WH signal in ZH | 1.0 | 2.7 | 1.0 | | Product of above | 8.9 | 13.3 | 7.2 | | CDF+DØ combination | 2.0 | 2.0 | 2.0 | | All combined | 17.8 | 26.6 | 14.4 | Now we have $H \rightarrow WW(^*)$ • • • • However there are some problems to be dealt with: Trigger for μ at high lum (taken care of by XFT upg.) Giorgio Chiarelli, DIS 07 ### MSSM Higgs \bigcirc BF(H \rightarrow $\tau\tau$) is large \Rightarrow (benchmark: $Z \rightarrow \tau \tau$) Tevatron is able to search a MSSM higgs for $tan\beta>30$ and $M_{\Delta}<200$ GeV/c² Giorgio Chiarelli, DIS 07 ### Slide from 2004 ~CDF &DO, designed for 132 ns ⇒will have to work at 396 and ~2.7×10³² cm⁻²s⁻€ | | Design | Base | |--------|---------------------|---------------------| | Fiscal | | | | Year | (fb ⁻¹) | (fb ⁻¹) | | FY03 | 0.33 | 0.33 | | FY04 | 0.64 | 0.56 | | FY05 | 1.2 | 0.93 | | FY06 | 2.7 | 1.4 | | FY07 | 4.4 | 2.2 | | FY08 | 6.4 | 3.3 | | FY09 | 8.5 | 4.4 | ### How is the Tevatron performing? ### B→ hh - II #### Con 1 fb-1 si osserva per la prima volta $\bigcirc B_s \rightarrow K\pi$ $$BR(B_8^0 \to K^-\pi^+) = (5.0 \pm 0.75 \text{ (stat.)} \pm 1.0 \text{ (syst.)}) \times 10^{-6}$$ → Misuriamo ACP (SM: ~50%): $$A_{\rm CP} = \frac{N(\overline{B}_s^0 \to K^+\pi^-) - N(B_s^0 \to K^-\pi^+)}{N(\overline{B}_s^0 \to K^+\pi^-) + N(B_s^0 \to K^-\pi^+)} = 0.39 \pm 0.15 \; (stat.) \pm 0.08 \; (syst.)$$ Two We can test SM predictions: Is observed CP violation in $B_d \rightarrow K\pi$ due to new physics? Check SM prediction of equal violation in $B_s \rightarrow K\pi$, PLB 261(2005), 126 ### Precision measurements #### Prod x-sect for WeZ $rightharpoonup \sigma(W)$ at large η , $Z \rightarrow \tau \tau$ #### Forward W cross section (CDF) Similar to Z rapidity, a comparison of W cross section from central and forward electrons constrains W production model Iongitudinal momentum distribution of W boson is important because acceptance affects couples this to observed transverse momentum distribution $$R_{\text{exp}}^{central / forward} = 0.925 \pm 0.033$$ $$R_{CTEO~6.1}^{central/forward} = 0.924 \pm 0.037$$ $$R_{MRST01E}^{central / forward} = 0.941 \pm 0.012$$ 8/1/2006 Darien Wood, ICHEP'06, "Electroweak Physics" 31 ### Top x-section ## CDF and DO, 1 fb⁻¹ #### ICHEP 06 Limit/SM Exp. Obs. 10.4 13010.1 10.6 160 3.9 180 7.5 5.8 #### **Tevatron Run II Preliminary** 10^{3} 95% CL Limit/SM CDF: 320 pb⁻¹ CDF: 1 fb WH→lvbb ZH→Hb̄b -D0: 320-389 pb WH→WWW CDE: 194 pb WH→WWW H→WW^(*)→lvlv D0; 363-384 pb⁻¹ $H\rightarrow WW^{(*)}\rightarrow lvlv$ 10 WH→lvы D0: 378 pb. CDF+D0 Combined July 26, 2006 180 $m_{H}^{}$ (GeV) 190 200 140 150 160 110 120 130 170 m_H (GeV/c²) #### Can we improve? - → Optimize selection ⇒Better tools - Optimization of b tagging - ¬ Z→bb (energy scale) - Tracking.. ### Un esempio concreto ⇒"Default tracking" capito (misure fisica) → Abbiamo capito come riguadagnare eff # B Physics/Lifetimes # CDF: fit to mass and lifetime D0: Λ_B in exclusive | B hadron | CDF measurement | | |----------------|-----------------------------------|--| | B+ | 1.630±0.016(stat.)± 0.011 (syst.) | | | B ⁰ | 1.551±0.019(stat.)±0.011 (syst.) | | | Λ_{b} | 1.580±0.077(stat.)±0.012 (syst.) | | | B_s | 1.494±0.054(stat.)±0.009 | | $\tau(B^{+})/\tau(B^{0}) = 1.051 \pm 0.023 \pm 0.004 \text{ (syst.)}$ $\tau(B_s)/\tau(B^0) = 0.963 \pm 0.047 \pm 0.005$ (syst.) $\tau(\Lambda_B)/\tau(B^0) = 1.018 \pm 0.062 \pm 0.007$ (syst.) Giorgio Chiarelli, DIS 07 ## Rare decays # Trigger capability on Irigger capability on B $$\rightarrow$$ hh allows study of rare decays $$A_{CP} = \frac{N(\overline{B}^0 \to K^-\pi^+) - N(B^0 \to K^+\pi^-)}{N(\overline{B}^0 \to K^-\pi^+) + N(B^0 \to K^+\pi^-)} = -0.086 \pm 0.023 \, (stat.) \pm 0.009 \, (sy)$$ $$\Rightarrow \text{For the first time measured}$$ $$BR(B_8^0 \to K^- \pi^+) = (5.0 \pm 0.75 \text{ (stat.)} \pm 1.0 \text{ (syst.)}) \times 10^{-6}$$ and its ACP: $$A_{\rm CP} = \frac{N(\overline{B}_s^0 \to K^+\pi^-) - N(B_s^0 \to K^-\pi^+)}{N(\overline{B}_s^0 \to K^+\pi^-) + N(B_s^0 \to K^-\pi^+)} = 0.39 \pm 0.15 \; (stat.) \pm 0.08 \; (syst.)$$ Testing the SM in this sector? Giorgio Chiarelli, DIS 07 # Systematics: $A_{CP}(B^0 \rightarrow Kpi)$ | source | shift wrt centra | |------------------------------------------|------------------| | mass scale | 0.0004 | | asymmetric momentum-p.d.f | 0.0001 | | $d\mathbf{E}/d\mathbf{x}$ | 0.0064 | | input masses | 0.0054 | | combinatorial background model | 0.0027 | | momentum background model | 0.0007 | | MC statistics | _ | | charge asymmetry | 0.0014 | | $\Delta\Gamma_s/\Gamma_s$ Standard Model | _ | | lifetime | _ | | isolation efficiency | _ | | XFT-bias correction | _ | | TOTAL (sum in quadrature) | 0.009 | # $A_{CP}(D^0 \rightarrow K^-\pi^+)$ Using the same analysis strategy of Bhh we fit the direct $A_{CP}(D^0 \rightarrow K\pi)$ which is expected to be very small in the SM and used it to check our understanding of charge biases. Already the kinematics separates D^0 from anti D^0 . We measured: $$A_{\text{CP}} = \frac{N_{\text{raw}}(\overline{D}^0 \to K^+\pi^-) \cdot \frac{\varepsilon(K^-\pi^+)}{\varepsilon(K^+\pi^-)} - N_{\text{raw}}(D^0 \to K^-\pi^+)}{N_{\text{raw}}(\overline{D}^0 \to K^+\pi^-) \cdot \frac{\varepsilon(K^-\pi^+)}{\varepsilon(K^+\pi^-)} + N_{\text{raw}}(D^0 \to K^-\pi^+)} = -0.00059 \pm 0.00136 \; (stat.) \pm 0.0022 \; (syst).$$ Only kinematic fit # Cross-check of $D^0 \rightarrow K\pi$ asymmetry with dE/dx To check the dE/dx systematics we performed an A_{CP} fit on a $D^0 \rightarrow K\pi$ sample. We did two fits :kinematic-only and dE/dx-only. #### Kinematic-only $$\frac{N_{\rm raw}(\overline{D}^0 \to K^+\pi^-) - N_{\rm raw}(D^0 \to K^-\pi^+)}{N_{\rm raw}(\overline{D}^0 \to K^+\pi^-) + N_{\rm raw}(D^0 \to K^-\pi^+)} = 0.00823 \pm 0.00136$$ $$\frac{N_{\text{raw}}(\overline{D}^0 \to K^+\pi^-) - N_{\text{raw}}(D^0 \to K^-\pi^+)}{N_{\text{raw}}(\overline{D}^0 \to K^+\pi^-) + N_{\text{raw}}(D^0 \to K^-\pi^+)} = 0.00207 \pm 0.00157$$ In the D⁰ \rightarrow K π we obtain A_{CP}(kine)-A_{CP}(dE/dx) = 0.00616 The discrepancy between the two fits is within our quoted dE/dx systematics on direct $A_{CP}(B^0 \rightarrow K\pi)$: 0.0064. # Probability ratio for $A_{CP}(B^0 \rightarrow K^{\dagger}\pi^{-})$ and $B^0_s \rightarrow K^{-}\pi^{+}$ $pdf(B_sK\pi) + pdf(other signals+bckg)$ ### Expectations for $Bs \rightarrow K^+K^-$ asymmetries Combining Bs->KK and Bd-> $\pi\pi$ asymmetries lead to a determination of γ via flavor-SU(3) relationship (see next) ## Measurement of γ at tree-level Asymmetries in B⁺ \rightarrow D⁰ K⁺ are a very theoretically clean way to measure γ (1%) This is a reference quantity for comparing other γ determinations in search for NP Several methods, depending on D^o modes: Measurements exist at B factories for all 3 CDF can do the same measurements; in additagging) Gronau PLB 557, 198: Extract y from Gronau PLB 557, 198: Extract $$\gamma$$ from $$R_{CP^{\pm}/\text{flav}} \equiv 2 \frac{\sum_{B^{+},B^{-}} \Gamma(B \to D_{\text{flav}}^{0} K)}{\sum_{B^{+},B^{-}} \Gamma(B \to D_{\text{flav}}^{0} K)} \text{Ratio between amplitudes:}$$ $$= 1 + \mathbf{r}_{\text{DK}}^{2} + 2 \mathbf{r}_{\text{DK}} \cos \gamma \cos \delta$$ $$A_{CP^{\pm}} \equiv \frac{\Gamma(B^{-} \to D_{CP^{\pm}}^{0} K^{-}) - \Gamma(B^{+} \to D_{CP^{\pm}}^{0} K^{+})}{\cdots + \cdots}$$ $$= \pm 2 \mathbf{r}_{\text{DK}} \sin \gamma \sin \delta / R_{CP^{+}}$$ Measure for each D \to f: $$R_{f}^{K/\pi} \equiv \frac{\sum_{B^{+},B^{-}} \Gamma(B \to D_{f}^{0} K)}{\sum_{\Gamma} \Gamma(B \to D_{f}^{0} \pi)}$$ Then $R_{CP\pm/flav} = R_{CP\pm}^{K/\pi} / R_{flav}^{K/\pi}$ ## Bd, Bs → μμ rare decays #### DO new result with 2 fb-1 - \bigcirc 3 events (2.3+-0.7 exp.) - ~ <9.3(7.5)10⁻⁸@95(90)% CL - The Not yet combined with CDF ## Run IIa data taking (1.3 pb⁻¹) 1 evts, 10.8±0.2 exp # CDF searches for B_s and B_d decays into dimuons - ← Expected at O(10-9) level - 0.8 fb-1 CL limits: - \Rightarrow B_s<10(8) 10⁻⁸ 95(90) % - \Rightarrow B_d<2.3(2) 10⁻⁸ 95(90) % ⇒To be updated soon.. ## SUSY limits-examples B_d 2.3(2) 10⁻⁸@95(90)%CL, B_s<9.3(7.5) 10⁻⁸ @95 (90)% CL ## MiniBoone The result of the $\nu_{\mu} \rightarrow \nu_{e}$ appearance-only analysis is a <u>limit</u> on oscillations: χ^2 probability, null hypothesis: 93% Energy fit: $475 < E_v^{QE} < 3000 \text{ MeV}$ ### Miniboone As planned before opening the box.... Report the full range: 300<E_vQE<3000 MeV 96 ± 17 ± 20 events above background, for 300<E_vQE<475MeV Deviation: 3.7σ Background-subtracted: